A novel GAA-repeat-expansion-based mouse model of Friedreich’s ataxia

نویسندگان

  • Sara Anjomani Virmouni
  • Vahid Ezzatizadeh
  • Chiranjeevi Sandi
  • Madhavi Sandi
  • Sahar Al-Mahdawi
  • Yogesh Chutake
  • Mark A. Pook
چکیده

Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a GAA repeat expansion mutation within intron 1 of the FXN gene, resulting in reduced levels of frataxin protein. We have previously reported the generation of human FXN yeast artificial chromosome (YAC) transgenic FRDA mouse models containing 90-190 GAA repeats, but the presence of multiple GAA repeats within these mice is considered suboptimal. We now describe the cellular, molecular and behavioural characterisation of a newly developed YAC transgenic FRDA mouse model, designated YG8sR, which we have shown by DNA sequencing to contain a single pure GAA repeat expansion. The founder YG8sR mouse contained 120 GAA repeats but, due to intergenerational expansion, we have now established a colony of YG8sR mice that contain ~200 GAA repeats. We show that YG8sR mice have a single copy of the FXN transgene, which is integrated at a single site as confirmed by fluorescence in situ hybridisation (FISH) analysis of metaphase and interphase chromosomes. We have identified significant behavioural deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8sR FRDA mice compared with control Y47R and wild-type (WT) mice. We have also detected increased somatic GAA repeat instability in the brain and cerebellum of YG8sR mice, together with significantly reduced expression of FXN, FAST-1 and frataxin, and reduced aconitase activity, compared with Y47R mice. Furthermore, we have confirmed the presence of pathological vacuoles within neurons of the dorsal root ganglia (DRG) of YG8sR mice. These novel GAA-repeat-expansion-based YAC transgenic FRDA mice, which exhibit progressive FRDA-like pathology, represent an excellent model for the investigation of FRDA disease mechanisms and therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Point Mutations in Frataxin Gene in Iranian Patients with Friedreich’s Ataxia

OBJECTIVE Friedreich's ataxia is the most common form of hereditary ataxia with autosomal recessive pattern. More than 96% of patients are homozygous for GAA repeat extension on both alleles in the first intron of FXN gene and the remaining patients have been shown to be heterozygous for a GAA extension in one allele and point mutation in other allele. MATERIALS & METHODS In this study, exons...

متن کامل

Expandable DNA Repeat and Human Hereditary Disorders

Background & Aims: Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA, including fragile X syndrome, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. One the most frequently occurring types of mutation is trinucleotide repeat expansion. The present study was conducted with the aim of investigating the cause...

متن کامل

Arq Neuropsiquiatr 1999;57(1):1-5 CLINICAL AND MOLECULAR STUDIES IN FIVE BRAZILIAN CASES OF FRIEDREICH ATAXIA

Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is caused in 94% of cases by homozygous expansions of an unstable GAA repeat localised in intron 1 of the X25 gene. We have investigated this mutation in five Brazilian patients: four with typical FRDA findings and one patient with atypical manifestations, who was considered to have some other form of cerebellar ataxia with r...

متن کامل

Familial segmental spinal myoclonus: a rare clinical feature of Friedreich’s ataxia

INTRODUCTION Friedreich's ataxia (FRDA) is the most common autosomal recessive inherited ataxia. It is characterized by onset before the age of 25 year, progressive limb and truncal ataxia, lower limb areflexia, extensor plantars, dysarthria and impaired posterior column sensations. Other important associated features are skeletal deformity, hypertrophic cardiomyopathy and diabetes mellitus. Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015